THE GREAT SECIENTIST – PYTHAGORAS (B.C. 580-500)

                Geometry-a thil finfiah tur ‘theorem’ lâr tak pakhat ‘Pythagoras Theorem’ tichhuaktu Pythagorus-a hi kum B.C. 550 daih tawh khan Greek rama Samos thliarkárah chhungkaw hausa takah a lo piang a. Hetih hun lai hian chhiarkawp tih tham a la awm lova, thil ziahna turin savun hman nacháng tak ngial pawh an la hre lo. Chuti khawpa rei tawh a nih avâng chuan Pythagoras-a chanchin leh a thil chhût chhuahte pawh ama ziak aṭang ni lovin, a hnua mite’n an ziah chhâwn aṭanga kan hriat a ni a, a chanchin ṭhenkhat phei chu thawnthu phuah chawp ang deuh thaw te pawh a ni hlawm.   

                Pythagoras-a hi a naupan têt aṭangin naupang thiam thei tak a ni a, kum 16 mi lek a nih lai pawhin an zirtirtute’n a zawhna mak tak tak chu an chháng thei tawh lo va. Chuti khawpa mi thluak ṭha leh thil chhût mi chuan Greek mi fing Thales-a hnuaiah a zir leh ta nghâl a. Tichuan, tûnlai hun thleng pawha a hming kan hriat lâr êm êm, Geometry zirna lama sûl sutu ropui tak a lo ni ta a ni.   

                A thil ngaihtuah chhuah ‘Pythagoras Theorem’ hi a hmingthan phah hlê. He theorem-in a sawi chu right angle triangle-a a rìn sei ber square leh a rìn tâwi pahnihte square belh khâwm a intluk chiah a ni, tih a ni a. Entir nân : right angle triangle-a a rin tâwi pahnihte chu 3cm leh 4cm lo ni ta se, a rìn sawi ber chu 5cm a lo ni ang. Hetah hian 3cm square chu 9cm a ni a, 4cm square chu 16cm a lo ni a, a rìn sei ber 5cm square pawh 25cm a lo ni a. Tichuan, a rìn tâwi pahnihte square belhkhâwm chu 25cm a lo ni a, chu chu a rìn sei ber square, 25cm nên a intluk chiah a ni. He a thil chhût chhuah hi Geometry zirnaah a ṭangkai hlê a ni.

                Pythagoras-a hian triangle kil thumte zau záwng leh right angle pahnih zau záwng a intluk a ni tih pawh a finfiah bawk. Geometry bâkah nambar chungchang hrim hrim te, arsi kal vêl dàn te a zir nasa hlê a. He leia chhûn leh zân awmna chhan pawh hi, kan lei hian meipui lian tak a hêl vâng niin a ring.   

                A hun lai hian lehkhabu a la awm lova, zirna sikul pawh a awm bawk hek lo. Chu vângin an thil zir dàn ber chu zin kuala, mi thiamte hnên aṭanga finna zir a ni mai a. Chutiang a nih avâng chuan Persia ram te, Babulon ram te, Arab ram te leh India ram te tlawhin a zin kual a, Aigupta ramah pawh kum tam tak chhung chámin, chhiarkawp leh rimawi inlaichin dàn te a zir nasa hlê a ni.   

                Kum 30 chuang zet hmun hrang hrang tlawha, mifing tam tak a kawm hnu chuan kum 50 vêl a lo ni ve ta a, a thil thiam leh hriatte chu mite hrilh chhâwn ve a lo châk ta a. Kum B.C. 532 khan Samos thliarkára lal nunrâwng tak avângin Italy ram chhim lamah a pém a. Kum B.C. 529-ah chulai rama Crotanay khuaah chuan zirna sikul a din ta a, ṭhalai 300 rual zet a sikulah chuan an lût ta nghâl a. Dik tak chuan zirna sikul hrim hrim aiin sakhaw inzirtirna hmun ang deuh hlekin a kalpui zâwk mah a, inhriatthiam tawn a ṭùlzia te a zirtir uar hlê. Chhiarkawp leh Geometry te, rimawi lam leh arsi chanchin te zirtirin, Greek-ho finna tam tak pawh a zirtir bawk ṭhin. 

                A hun hnuhnung lamah chuan ram rorêlna (politics) lamah a inrawlh ta thung a, chu chuan vanneihna aiin vanduaina a thlen ta zâwk a. Amah leh a pawlte’n thuneihna an lo chanin, mi mâwl zâwkte lung a tiawi ta lo va, mipuiho thin thawk chuan paih thlàin, an hnawt chhuak ta hial a. Kum B.C. 500 khan kum 80 mi niin, Italy rama Metapontum hmunah a boral ta a ni.  

                Pythagoras-a hi a fin êm avângin Greek mite’n an ngaisang êm êm a. A thih hnu kum 200 khan an khawpui Rome-ah a lim dinin, Greek-ho zinga mifing ber leh huaisen ber nihna an hlân ta nghe nghe a ni.  

 

LEAVE A REPLY

Please enter your comment!
Please enter your name here